Dash for Scientific Computing

A tutorial to use Dash for building interactive web applications focused on scientific computing

Dash provides a flexible and powerful platform for scientists and engineers to create interactive web-based applications. This tutorial expands on the basics and focuses on how to integrate Dash with scientific computing libraries such as NumPy, SciPy, and Matplotlib, while using Plotly for interactive visualizations.

Prerequisites

Ensure that you have Python installed, and install the following packages:

pip install dash dash-bootstrap-components pandas plotly numpy scipy matplotlib

Scientific Libraries Overview

Dash integrates well with libraries used for scientific computing. Here are some essential libraries:

NumPy

A fundamental package for numerical computing in Python.

SciPy

Builds on NumPy to provide a collection of algorithms and functions for scientific computing.

Matplotlib

A comprehensive library for creating static, animated, and interactive visualizations in Python.

Plotly

Provides interactive graphing tools for scientific data visualization.

Resources to help you learn Dash

Example 1: Visualizing Scientific Data with NumPy and Plotly

In this example, we will use NumPy to generate some scientific data and visualize it using Plotlyโ€™s interactive graphs within a Dash app.

import dash
from dash import dcc, html
import dash_bootstrap_components as dbc
import numpy as np
import plotly.graph_objs as go

# Generate scientific data using NumPy
x = np.linspace(0, 10, 100)
y = np.sin(x)  # A simple sine wave

# Build your components
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.COSMO])

app.layout = dbc.Container([
    dcc.Graph(id='graph', figure={
        'data': [
            go.Scatter(x=x, y=y, mode='lines', name='Sine Wave')
        ],
        'layout': go.Layout(title='Sine Wave Visualization', xaxis={'title': 'X-axis'}, yaxis={'title': 'Y-axis'})
    })
])

# Run the app
if __name__ == '__main__':
    app.run_server(debug=True, port=8052)
Explanation:
  • We use NumPy to generate an array of values x and compute the corresponding sine wave y.

  • plotly.graph_objs is used to create a line graph of the sine wave.

  • The Dash layout contains a dcc.Graph component to display the interactive plot.

Example 2: Interactive Data Analysis with SciPy

This example demonstrates how to incorporate data analysis using the SciPy library and create interactive graphs in Dash. We will compute a Fourier Transform and visualize it.

import dash
from dash import dcc, html, Input, Output
import dash_bootstrap_components as dbc
import numpy as np
import scipy.fft as fft
import plotly.graph_objs as go

# Generate sample data using NumPy
x = np.linspace(0, 2*np.pi, 1000)
y = np.sin(5*x) + 0.5*np.random.normal(size=x.shape)  # A sine wave with noise

# Build your components
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.MINTY])

# Layout
app.layout = dbc.Container([
    dcc.Graph(id='time-domain', figure={}),
    dcc.Graph(id='frequency-domain', figure={}),
    html.Div([
        dcc.Slider(1, 50, 1, value=5, id='freq-slider', marks={i: f'{i} Hz' for i in range(1, 51)})
    ])
])

# Callback to update the graphs based on slider input
@app.callback(
    [Output('time-domain', 'figure'),
     Output('frequency-domain', 'figure')],
    [Input('freq-slider', 'value')]
)
def update_graph(freq):
    # Time-domain signal (sine wave with noise)
    y = np.sin(freq * x) + 0.5 * np.random.normal(size=x.shape)

    # Frequency-domain analysis (Fourier Transform)
    Y = fft.fft(y)
    freq_vals = fft.fftfreq(len(x), d=x[1]-x[0])

    # Time-domain plot
    time_fig = go.Figure(
        data=[go.Scatter(x=x, y=y, mode='lines', name='Time-domain Signal')],
        layout=go.Layout(title='Time-domain Signal', xaxis={'title': 'Time'}, yaxis={'title': 'Amplitude'})
    )

    # Frequency-domain plot (magnitude of FFT)
    freq_fig = go.Figure(
        data=[go.Scatter(x=freq_vals, y=np.abs(Y), mode='lines', name='Frequency-domain Signal')],
        layout=go.Layout(title='Frequency-domain Signal', xaxis={'title': 'Frequency (Hz)'}, yaxis={'title': 'Magnitude'})
    )

    return time_fig, freq_fig

# Run the app
if __name__ == '__main__':
    app.run_server(debug=True, port=8053)
Explanation:
  • np.sin() generates a sine wave signal, and scipy.fft.fft computes its Fourier Transform.

  • We use a Dash Slider component to allow the user to control the frequency of the sine wave.

  • The time-domain and frequency-domain plots update dynamically based on the slider input.

Example 3: Scientific Computing with Matplotlib and Plotly

In this example, we use both Matplotlib and Plotly within a Dash app to display complex scientific visualizations. Weโ€™ll visualize a mathematical function, and use Plotly for interactivity.

import dash
from dash import dcc, html, Input, Output
import dash_bootstrap_components as dbc
import numpy as np
import matplotlib.pyplot as plt
import plotly.tools as tls

# Generate sample data
x = np.linspace(0, 10, 100)
y = np.exp(-x) * np.sin(2 * np.pi * x)

# Build your components
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.SANDSTONE])

# Layout
app.layout = dbc.Container([
    dcc.Graph(id='matplotlib-plot', figure={})
])

# Callback to render the Matplotlib plot in Plotly
@app.callback(
    Output('matplotlib-plot', 'figure'),
    Input('matplotlib-plot', 'id')
)
def update_graph(_):
    # Create Matplotlib plot
    fig, ax = plt.subplots()
    ax.plot(x, y, label='y = exp(-x) * sin(2ฯ€x)')
    ax.legend()
    ax.set_title('Exponential Decay with Sinusoidal Oscillation')
    ax.set_xlabel('x')
    ax.set_ylabel('y')

    # Convert Matplotlib figure to Plotly figure
    plotly_fig = tls.mpl_to_plotly(fig)
    return plotly_fig

# Run the app
if __name__ == '__main__':
    app.run_server(debug=True, port=8055)
Explanation:
  • We use Matplotlib to create a plot of the mathematical function y = exp(-x) * sin(2ฯ€x).

  • plotly.tools.mpl_to_plotly converts the Matplotlib figure into a Plotly figure for interactive use in Dash.

Conclusion

You’ve now explored several examples of using Dash for scientific computing. By integrating NumPy, SciPy, Matplotlib, and Plotly, you can create highly interactive and visually rich web applications tailored to scientific research and data analysis.